Thermal expansion of silico-phosphate glasses with small additions of Fe₂O₃: EPR and dilatometric studies

C. B. AZZONI, G. L. DEL NERO[†]

Gruppo nazionale di Struttura della Materia del C.N.R., Dipartimento di Fisica "A. Volta" dell'Università di Pavia, Italy

A. KRAJEWSKI, A. RAVAGLIOLI Istituto di Ricerche Tecnologiche per la Ceramica, C.N.R., Faenza, Italy

Electron paramagnetic resonance (EPR) and dilatometric measurements in phosphosilicate glass have been made in order to elucidate an anomalous trend of the linear thermal expansion coefficient β when Fe₂O₃ was added to the composition. The $g \simeq 2$ and $g_{eff} \simeq 4.27$ EPR lines were attributed, respectively, to undistorted and octahedrally coordinated Fe³⁺ ions, and to Fe³⁺ ions in low symmetry (rhombic) sites. The Fe³⁺ ion distribution in the network at different temperatures has been explained by a model of chemical insertion and it has been proved that the Fe³⁺ ions have two kinds of role as network modifiers. A relationship has also been found between β and the amounts of Fe₂O₃ added in the range 0 to 12 wt %.

1. Introduction

Studies have been carried out to find out in which way the Fe³⁺ ions enter a phosphosilicate vitreous system (used for its bioactivity characteristics in contact with living tissues) showing an anomalous trend of the linear thermal expansion coefficient β for Fe₂O₃ additions of less than 4 wt %. Anomalous behaviour of physical parameters has been observed by other authors for vitreous systems containing Fe³⁺ and P⁵⁺ [1, 2].

2. Experimental details

The base glass had the composition [3]: 45 SiO₂, 6P₂O₅, 24.5 Na₂O, 24.5 CaO (in wt %). To this composition was added Fe₂O₃ in the range 0.2 to 12.0 wt%, corresponding to $x \mod g^{-1}$ of Fe³⁺ with 2.5 × 10⁻⁵ $\leq x \leq 150.0 \times 10^{-5}$.

The batches were fired in air in a platinum crucible into a programmed kiln. The program was formulated with an overall glass-making firing time of about 300 min distributed in the following manner:

(a) reaching 300° C in 20 min and held steady at this temperature for 15 min (to allow the evaporation of water from the powders to be as complete as possible);

(b) reaching 900° C in 45 min and held steady at this temperature for 20 min (to allow complete CO₂ removal since Na₂O and CaO were introduced as carbonates);

(c) reaching the range 1050 to 1100° C in 20 min and held steady at this temperature for 15 min (to help the initial synthesis reactions, to complete the removal of all the gases present and to obtain a sufficient amount of initial melt);

(d) reaching 1350° C in 60 min and held steady at this last temperature for 2 h to allow the complete homogenization of the melt.

The melts thus obtained were poured out into graphite moulds pre-heated to 600° C, then slowly cooled to room temperature. The thermal history of the glasses obtained and the methodologies by which they were prepared were accurately standardized.

[†]It is with deep regret that we note the death of Professor G. L. Del Nero.

TABLE I Weight per cent of Fe₂O₃ addition and the equivalent $x \mod g^{-1}$ of Fe³⁺, linear thermal expansion coefficient $\beta \pm 2 \times 10^{-7}$, $x_r \mod g^{-1}$ of Fe³⁺ ions in lower symmetry sites ($x_c = x - x_r$), experimental parameter $y = x_r/x_c$.

	1 0							1. 0
Addition (wt%)	$x \times 10^{-5}$ (molg ⁻¹)	$\beta \times 10^{5}$ (° C ⁻¹)	$x \times 10^{5}$ 350° C (mol g ⁻¹)	x × 10 ⁵ 167° C (molg ⁻¹)	$x \times 10^{5}$ 20° C (molg ⁻¹)	у 350° С	у 167° С	у 20° С
0	0	1.40						
0.2	2.5	1.39	2.4 ± 0.2	2.4 ± 0.2	2.4 ± 0.2	20.00 ± 1.5	28.00 ± 2.2	55.00 ± 3.5
0.5	6.23	1.45	5.5 ± 0.4	5.7 ± 0.5	6.0 ± 0.5	7.60 ± 0.6	11.00 ± 0.9	24.00 ± 2.0
1.0	12.5	1.45	10.0 ± 0.7	11.0 ± 0.7	12.0 ± 0.8	3.80 ± 0.3	5.60 ± 0.5	11.00 ± 0.9
2.0	25.0	1.43	16.0 ± 1.2	18.0 ± 1.2	21.0 ± 1.4	1.80 ± 0.2	2.60 ± 0.2	5.50 ± 0.5
3.0	37.6	1.42	20.0 ± 1.6	23.0 ± 1.8	29.0 ± 2.0	1.10 ± 0.1	1.60 ± 0.1	3.40 ± 0.3
4.0	50.1	1.38	22.0 ± 1.8	26.0 ± 2.1	34.0 ± 2.8	0.78 ± 0.06	1.10 ± 0.1	2.10 ± 0.2
8.0	100.0	1.39	20.0 ± 1.6	26.0 ± 2.2	41.0 ± 3.3	0.25 ± 0.02	0.30 ± 0.02	0.70 ± 0.06
12.0	150.0	1.39	21.0 ± 1.8	27.0 ± 2.1	40.0 ± 3.2	0.16 ± 0.01	0.22 ± 0.02	0.36 ± 0.03

The dilatometric tests were performed with an automatic Netzch dilatometer in a temperature range 20 to 500°C. The samples, 5 cm long, were obtained with an accurate lapping of the little rods obtained from the moulds. The $\beta = (1/L_0)(dL/dT)_p \simeq \alpha/3$ values are reported in Table I. EPR measurements were performed at X-band (9.008 GHz) at 350°C, 167°C, 20°C and -196° C. For the same Fe₂O₃ additions the EPR spectra at 20° C and at -196° C were identical. The line shape was Gaussian and the resonance spectrum of all the samples was interpreted as the overlapping of one symmetric signal with $\mathbf{g} =$ 2.000 ± 0.015 and one non-symmetric signal with $g_{eff} = 4.27 \pm 0.03$.

The $\mathbf{g} \simeq 2$ signal was attributed to Fe³⁺ ions in undistorted octahedral coordination (O_h sites) and the $\mathbf{g}_{eff} \simeq 4.27$ signal to Fe³⁺ ions in axial symmetry sites with a rhombic component C_{2v} (perhaps also a distortion towards C_{3v} in some cases) [4-7]. The line-width of the $\mathbf{g} \simeq 2$ symmetric signal $\Delta H_{pp} = 600 \pm 50$ G does not depend on x or on the temperature; on the contrary the observed effective line-width of the non-symmetric signal depends on x and on temperature as summarized in Table II.

We called x_r the molar number g^{-1} of Fe³⁺ ions

in low symmetry sites and x_c the molar number g^{-1} of Fe³⁺ ions in regular octahedral coordination. Using numerical methods [8] we computed the signal areas and we ascertained that $x_r + x_c = x$ for every x-value. We also obtained the $y = x_r/x_c$ parameter, and consequently:

$$x_{\rm r} = xy/(y+1) \tag{1}$$

$$x_{\rm c} = x/(y+1).$$
 (2)

The Fe³⁺ ions appear to insert, in the two sites, in different ways; in fact x_r increases with x until a maximum value x_{rm} is reached, depending on the temperature, as shown in Fig. 1, and the Fe³⁺ ions in low symmetry sites are well distributed in the network since, at a given temperature, the effective ΔH_{pp} values of the non-symmetric signal show a quasi-linear increase with x_r . On the contrary, the undistorted octahedral sites are occupied by Fe³⁺ ions with cluster formation as suggested by the fact that the line-width of the symmetric signal does not depend on x and x_c [9].

3. Discussion

The EPR spectra show that Fe^{3+} inside the glass resides in two distinct sites, given the symbols when empty, $*_r$ and $*_c$. The occupation of these sites by the iron ions will be indicated by x_r and

$\times 10^{s}$	$\Delta H_{\mathbf{pp}}(\mathbf{G}) 350^{\circ} \mathrm{C}$	$\Delta H_{pp}(G) \ 167^{\circ} C$	$\Delta H_{\mathbf{pp}}(\mathbf{G}) \ 20^{\circ} \mathrm{C}$
2.5	70 ± 5	50 ± 4	40 ± 3
6.23	90 ± 7	70 ± 5	60 ± 5
12.5	110 ± 10	100 ± 10	90 ± 7
25.0	150 ± 12	140 ± 12	140 ± 12
37.6	170 ± 15	160 ± 15	180 ± 15
50.1	180 ± 15	180 ± 15	210 ± 15
100	170 ± 15	180 ± 15	250 ± 15
150	180 ± 15	180 ± 15	240 ± 15

TABLE II Experimental values of the effective linewidth ΔH_{pp} of the $g_{eff} = 4.27$ EPR line.

Figure 1 Experimental values of x_r (*, at 20°C; •, at 167°C; x, at 350°C) and of x_c (\blacktriangle , at 20°C; \blacksquare , at 167°C; \blacksquare , at 167°C; \blacksquare , at 350°C) and plot of Equations 1 and 2.

 x_c (see Equations 1 and 2) and will depend on both temperature and Fe³⁺ concentration. Thus, if chemical equilibria take place, we may write:

$$\operatorname{Fe}_{\mathrm{fi}}^{3+} + *_{\mathrm{r}} \rightleftarrows x_{\mathrm{r}}$$
$$\operatorname{Fe}_{\mathrm{fi}}^{3+} + *_{\mathrm{c}} \rightleftarrows x_{\mathrm{c}},$$

where Fe_{fi}^{3+} indicates the "free" ion, i.e. the Fe_{fi}^{3+} not associated with a site. By eliminating Fe_{fi}^{3+} in the above equations we obtain:

$$x_{c} + *_{r} \rightleftarrows x_{r} + *_{c}$$

where the reaction constant is given by \dagger

$$K = x_{\mathbf{r}} *_{\mathbf{c}} / x_{\mathbf{c}} *_{\mathbf{r}}.$$

Thus, by setting

$$f(\mathbf{x}) = \mathbf{*_c}/\mathbf{*_r}$$

and $y = x_r/x_c$, we obtain[†]

$$K = yf(x).$$

Figs. 2a and b show that data points can be fitted well with the choice $f(x) = \sinh(bx)$ or $f(x) \simeq bx$ for small x-values.

The best-values of b and K deduced with such a choice are:

for
$$T = 20^{\circ}$$
C: $b = 2.50 \times 10^{3}$ and $K = 3.48$

for
$$T = 167^{\circ}$$
C: $b = 2.44 \times 10^{\circ}$ and $K = 1.72$

for
$$T = 350^{\circ}$$
C: $b = 2.38 \times 10^{3}$ and $K = 1.13$.

From the van't Hoff relation:

$$\Delta G^0 = -RT\ln K,$$

we obtain a free energy $\Delta G^0 = -5 \text{ kJ mol}^{-1}$. Such an endothermic heat of reaction is comparable with the energy for the free rotation of the tetrahedrons into the glass and with the changes in enthalpy associated with the changes of Fe³⁺ coordination.

The temperature-induced structural relaxation in a glass involves changes of the Fe^{3+} coordination [11, 12]. Unlike crystals, where such a change occurs in a narrow temperature range (phase transition), in glasses many coordination arrangements may coexist over extended temperature intervals and there is a continuous change, with temperature, of the population factors. These changes are driven by the structural relaxation of the glass network and can be predicted by the usual thermodynamic relations.

For a Fe₂O₃ content less than 4 wt%, a low symmetry rhombic coordination is favoured and x_r remains nearly constant when x is increased above 50 × 10⁻⁵; assuming in a hypothetical model, as an orientative example, that the Fe³⁺ ions are associated with a site P⁵⁺ (Fig. 3), the low symmetry of these sites may be due to a distortion of the charges around the Fe³⁺ created by its dipole moment, by the P=O bonds and/or to the presence of alkaline ions [13, 14]. Our findings for $x \ge 50 \times 10^{-5}$ agree with the often made suggestion [15–21] that octahedral surroundings for Fe³⁺ are favoured when phosphate groups are present.

The dilatometric tests prove that the linear

[†]The algebraic final formulation proposed for chemical equilibrium within a single phase remains formally the same with other approaches.

Figure 2 Best-fit curves of experimental values of y against x (a) and y against $f^{-1}(x)$ (b) at 20°C (•), at 167°C (•) and at 350°C (•).

Figure 3 Interaction hypothesis between an Fe^{3+} ion and a neighbouring oxygen ion of a phosphatic group bonded with the silicate network (the SiO_4^{-} groups are reported as tetrahedra).

Figure 4 Experimental values of linear thermal expansion coefficient β of the doped glass: the dashed line is the trend of β against x according to Winkelmann and Schott. The continuous line is the plot of Equation 3.

thermal expansion coefficient β depends on the amount of Fe₂O₃. However, for $x < 50 \times 10^{-5}$ the relationship between β and x is not linear (see Fig. 4): while it is possible that some iron species exist which escape the EPR observation [22–29], it is believed that this phenomenon is related to the behaviour of the y-values.

It was therefore attempted to deduce a relationship between β and x: giving to Fe³⁺ ions in low symmetry sites the role of network modifiers inside a network substantially stable and assuming that the network is definitively filled in this manner when all the low symmetry sites, for a known temperature, are occupied and then it undergoes a continuous rearrangement of the network by the further additions of Fe₂O₃ (where new sites are created for Fe³⁺ at the higher symmetry coordination), the following empirical relation is suggested:

$$\beta = 40(\bar{x}_{\rm rm} - \bar{x}_{\rm r})\bar{x}_{\rm r} + 1.38 \times 10^{-5},$$
 (3)

where \bar{x}_{rm} and \bar{x}_{r} are the average values calculated from Equation 1 around the test temperature of β .

Because the expansion coefficient for the glass system containing p wt% of Fe₂O₃ can be written, for the additive law:

$$\alpha = \sum_i p_i a_i - (p/100) \sum_i p_i a_i + pa,$$

where p_i are the wt% and a_i are the characteristic constants of original glass components, and a is the characteristic constant of Fe₂O₃, we obtain, from Equation 3:

$$a = 1.9 \times 10^{-6} (\bar{p}_{\rm rm} - \bar{p}_{\rm r}) \bar{p}_{\rm r} / p + 4.14 \times 10^{-7}.$$
(4)

We deduce, from Equation 4, that *a* reaches its constant value of $\sim 4 \times 10^{-7}$ when the rhombic sites are all occupied by Fe³⁺ ions.

4. Conclusions

The study of this phosphosilicate glass with Fe_2O_3 additions reveals that Fe^{3+} ions, on entering the glass network, reside in the following ways:

1. for addition of small amounts (< 4 wt %) of Fe₂O₃ a distorted rhombic coordination of Fe³⁺ predominates,

2. for higher Fe_2O_3 addition the rhombic sites are all occupied and the Fe^{3+} ions insert themselves into sites with regular octahedral coordination.

A relationship to evaluate the transition energy between the two coordination geometries was established and the dependence of β on the added Fe₂O₃ was qualitatively explained.

The system behaves according to the Winkelmann and Schott rule if the characteristic constant a of Fe₂O₃ is employed for Fe₂O₃ additions larger than 4 wt %.

Acknowledgements

The authors are very indebted to R. Visani, technical division coordinator in 1982 at IRTEC Institute of Faenza, and to the technicians G. Righi and A. Piancastelli for sample preparations.

References

- 1. K. E. FOX, T. FURUKAWA and W. B. WHITE, J. Amer. Ceram. Soc. 64, (1981) C42.
- O. GZOWSKI, L. MURAWSKI, W. LIZAK, H. BINCZYCKA and J. SAWICKI, J. Phys. D. 14 (1981) L77.
- 3. L. L. HENCH, Ceramurgia 5 (1977) 253.
- B. BLEANEY and K. W. H. STEVENS, *Rep. Prog. Phys.* 16 (1953) 108.
- H. H. WICKMAN, M. P. KLEIN and D. A. SHIRLEY, J. Chem. Phys. 42 (1965) 2113.
- 6. T. KOMATSU and N. SOGA, *ibid.* 72 (1980) 1781.
- 7. C. M. BRODBECK and R. R. BUKREY, *Phys. Rev.* **B24** (1981) 2334.
- C. B. AZZONI, G. L. DEL NERO, A. KRAJEWSKI and A. RAVAGLIOLI, *Lett. al Nuovo Cimento* 26 (1979) 55.
- 9. L. D. BOGOMOLOVA and E. K. HENNER, J. Mag. Res. 41 (1980) 422.
- 10. A. WINKELMANN and O. SCHOTT, Ann. der Physik Chem. 51 (1894) 735.
- 11. J. ROBERTSON, Phys. Chem. Glasses 23 (1982) 1.
- 12. A. C. WRIGHT and A. J. LEADBETTER, *ibid.* 17 (1976) 122.
- 13. T. CASTNER JR, G. S. NEWELL, W. C. HOLTON and C. P. SLICHTER, *J. Chem. Phys.* **32** (1960) 668.

- 14. D. LOVERIDGE and S. PARKE, Phys. Chem. Glasses 12 (1971) 19.
- 15. J. WONG and G. A. ANGELL, "Glass: Structure by Spectroscopy" (Marcel Dekker, New York, 1976).
- 16. R. J. EDWARDS, A. PAUL and R. W. DOUGLAS, *Phys. Chem. Glasses* 13 (1972) 137.
- 17. C. R. KURKJIAN and E. A. SIGETY, *ibid.* 9 (1968) 73.
- E. BAIOCCHI, M. BETTINELLI, A. MONTENERO and L. DISIPIO, Commun. Amer. Ceram. Soc. 3 (1982) C39.
- J. E. FENSTERMACHER, J. Non-Cryst. Solids 38/39 (1980) 239.
- 20. F. N. STEELE and K. W. DOUGLAS, *Phys. Chem. Glasses* 6 (1966) 246.
- 21. P. S. DANIELSON and J. W. H. SCHREURS, J. Non-Cryst. Solids 38/39 (1980) 177.
- 22. H. V. LAVER JR and R. V. MORRIS, J. Amer. Ceram. Soc. 60 (1977) 443.

- A. K. BANDYOPADHYAY, M. RIBES, F. PERNOTL and J. ZARZYCKI, *Phys. Chem. Glasses* 23 (1982) 31.
- 24. G. A. C. M. SPIERINGS, G. M. G. JOCHEM and T. P. M. MEEVWSEN, *Glass Technol.* 22 (1981) 234.
- 25. J. A. DUFFY, Phys. Chem. Glasses 16 (1975) 22.
- N. A. EISSA, A. N. SANAD, S. M. YOUSSES,
 S. A. EL-HENAWII and S. SH. GOMAA, *Acta Phys. Hung.* 48 (1980) 403.
- V. N. MANK and L. S. SONKIV, "Geochemistry Topics", edited by Doklady (Scripta Publ. Co., New York, 1979).
- 28. G. LEHMANN, Phys. Status Solidi B99 (1980) 623.
- 29. J. W. PARK and H. CHEN, *Phys. Chem. Glasses* 23 (1982) L107.

Received 1 September 1983 and accepted 24 January 1984